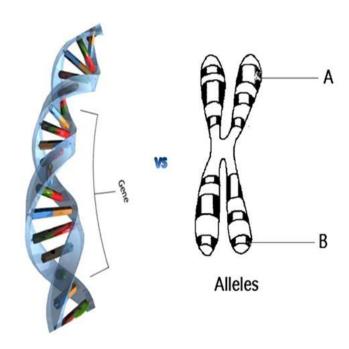


Генотип - эволюционно сложившаяся система генов. Иммуногенетика: ABO, Rh, HLA системы.

ФГБОУ ВО ОрГМУ Минздрава России Доцент кафедры биологии, к.б.н. Тихомирова Г.М.

Генотип. Классификация генов. Слайд 3-8

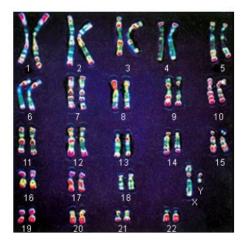
ФГБОУ ВО ОрГМУ Минздрава России Доцент кафедры биологии, к.б.н. Тихомирова Г.М.

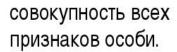

Термин «генотип» был введен генетиком В.Л. Иогансен в 1909 году.

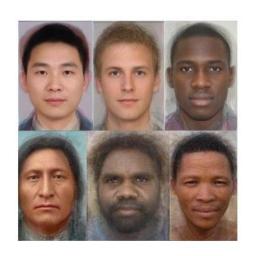
Геноти́п — совокупность генов данного организма.

Вильгельм Людовик Иогансен (1857-1927 г.г.) датский биологи, профессор физиологии растений Копенгагенского университета

Генотип — это система взаимодействующих аллелей, характерных для данного индивидуума. Генотип, характеризует особь. В более узком смысле под генотипом понимают комбинацию аллелей гена или локуса у конкретного организма.

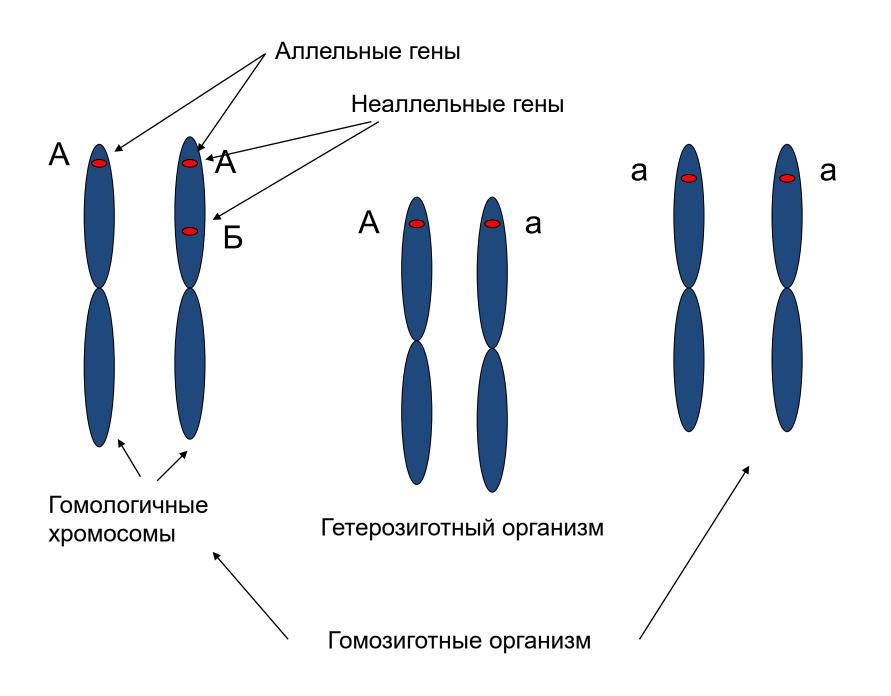

Процесс определения генотипа называется генотипированием.



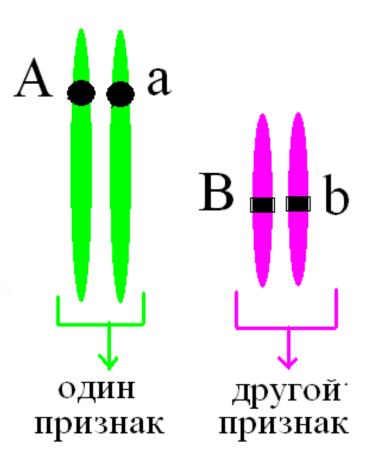

Генотип вместе с факторами внешней среды определяет фенотип организма. При этом особи с разными генотипами могут иметь одинаковый фенотип, а особи с одинаковым генотипом могут в различных условиях отличаться друг от друга.

ГЕНОТИП И ФЕНОТИП

совокупность всех генов отдельной особи.


Ген – элементарная единица наследственности, участок молекулы ДНК, определенный локус хромосомы. Один ген кодирует одну полипептидную цепь, тем самым, определяя развитие признака. В диплоидном наборе в соматических клетках эукариот содержатся две гомологичные хромосомы и соответственно два гена, определяющие развитие какого-то одного признака.

Классификация генов:


• Доминантные

• Рецессивные

- Аллельные
- Неаллельные
- Голандрические

- Аллельные гены расположены в одинаковых локусах гомологичных хромосом и определяющие различные проявления одного и того же признака (обозначаются одной буквой).
- Неаллельные гены расположены в разных локусах гомологичных хромосом или в негомологичных хромосомах; определяют развитие разных признаков
- Голандрические гены локализованы в участках У-хромосомы, негомологичных Х-хромосоме, определяют развитие признаков, наследуемых только по мужской линии

Взаимодействие между генами в генотипе.

Взаимодействие аллельных генов. Слайд 10-21

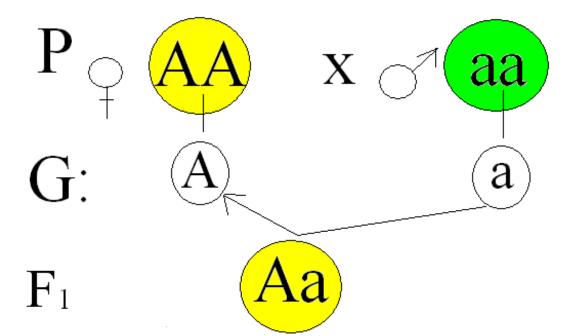
ФГБОУ ВО ОрГМУ Минздрава России Доцент кафедры биологии, к.б.н. Тихомирова Г.М.

Взаимодействие аллельных генов

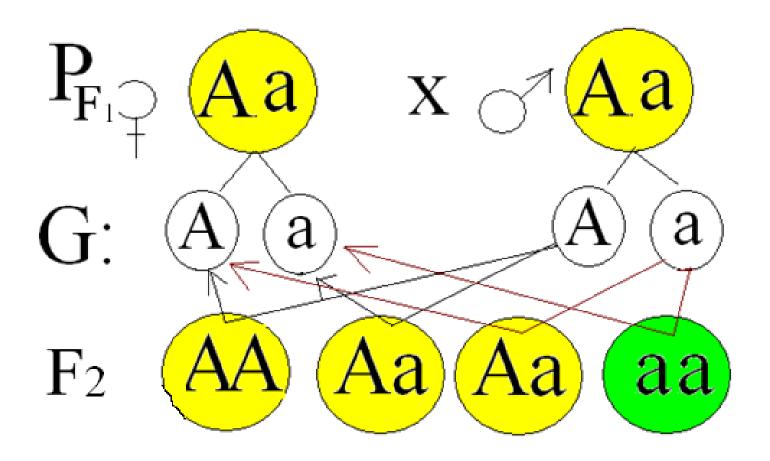
- Полное доминирование
- Неполное доминирование
- Сверхдоминирование
- Кодоминирование
- Аллельное исключение
- Межаллельная комплементация

Форма взаимодействия	Определение		
полное доминирование	один ген полностью подавляет проявление другого гена (признак наследуется по законам Менделя), при этом гомозиготы по доминантному признаку и гетерозиготы фенотипически неотличимы. Например, ген желтого цвета семян гороха полностью подавляет ген зеленой окраски, ген карих глаз у человека подавляет ген голубой их окраски.		
неполное доминирование	доминантный ген не полностью подавляет проявление действия рецессивного гена. У гибридов первого поколения наблюдается промежуточное наследование, а во втором поколении — расщепление по фенотипу и генотипу одинаковое. Например, если скрестить растения душистого горошка с красными и белыми цветами первое поколение будет иметь розовые цветки.		
сверхдоминирование	доминантный ген в гетерозиготном состоянии проявляет себя сильнее, чем в гомозиготном. У мухи дрозофилы имеется рецессивный летальный ген (а) — гомозиготы (аа) погибают. Мухи, гомозиготные по гену А (АА) имеют нормальную жизнеспособность, а гетерозиготы (Аа) — живут дольше и более плодовиты, чем доминантные гомозиготы. Объяснить это можно взаимодействием продуктов генной активности.		
кодоминирование	гены одной аллельной пары равнозначны, ни один из них не подавляет действия дру если они оба находятся в генотипе, оба проявляют свое действие. Типичным приме кодоминирования является наследование групп крови человека по ABO- (группа A MN- (группа MN) системам. Одновременное присутствие в генотипе генов Ј ^A и Ј ^B обусливает наличие в эритроцитах антигенов А и В (IV группа крови). Гены Ј ^A и Ј ^B не подавлуруг друга — они являются равноценными.		
межаллельная комплементация	редкое взаимодействие генов, при котором возможно формирование нормального признака у организма гетерозиготного по двум мутантным генам.		
аллельное исключение	форма взаимодействия, заключающаяся в инактивации одного из аллелей, расположенных в X-хромосоме, что связано с переходом одной из X-хромосом в спирализованное состояние (тельце Барра). Происходит у гомогаметного пола на ранних этапах онтогенеза. Процесс случайный в разных типах клеток инактивируются разные их X-хромосомы, что в случае гетерозиготности может привести к мозаичному проявлению признака		

Полное доминирование


Один ген полностью подавляет проявление другого гена, при этом гомозиготы и гетерозиготы фенотипически неотличимы.

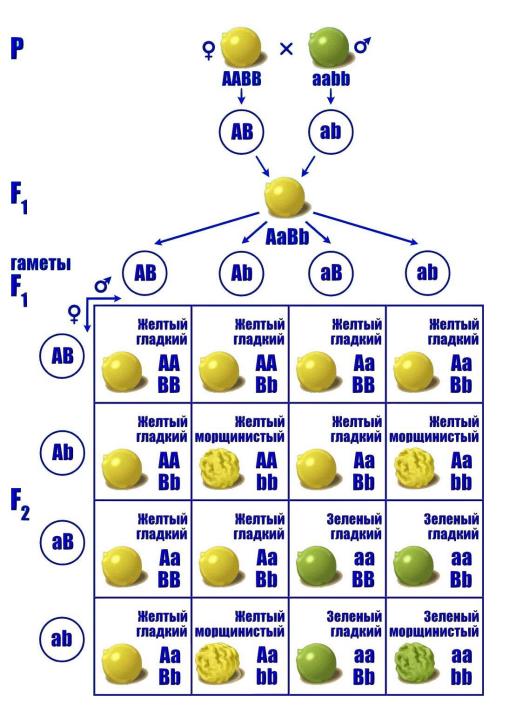
 Расщепление при скрещивании гетерозигот по генотипу 1:2:1; по фенотипу 3:1


Первый закон Менделя - закон единообразия гибридов первого поколения.

Признак	Ген	Генотип
Желтый горох	Α	AA, Aa
Зеленый горох	а	aa
F ₁ - ?		

100% единообразие

Второй закон Менделя - закон расщепления.

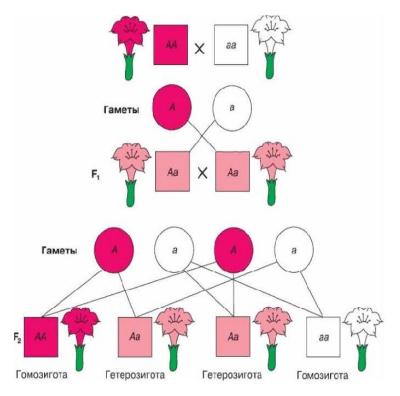


Расщепление по генотипу - 1: 2:1

Расщепление по фенотипу - 3:1

Третий закон Менделя закон независимого комбинирования признаков

Признак	Ген	Генотип
Желтый горох	А	AA, Aa
Зеленый горох	а	aa
Гладкий горох	В	BB, B_
Морщинистый	В	ВВ
F ₁ - ?		


При скрещивании гомозиготных организмов, анализируемых по двум (или более) парам альтернативных признаков, отмечается единообразие первом поколении потомков; во поколении каждая втором признаков наследуется независимо от другой и дает с ними разные сочетания. Этот закон действует в TOM случае, когда гены, контролирующие разные признаки, лежат в разных парах хромосом.

9/16	A_ B_	Желтый гладкий
3/16	А_ вв	Желтый морщинистый
3/16	aa B_	Зеленый гладкий
1/16	аавв	Зеленый морщинистый

Неполное доминирование

Доминантный ген не полностью подавляет действие рецессивного гена. У гибридов первого поколения наблюдается промежуточное наследование признаков.

Неполное доминирование

Расщепление при скрещивании гетерозигот по генотипу по фенотипу одинаковое 1:2:1

Сверхдоминирование

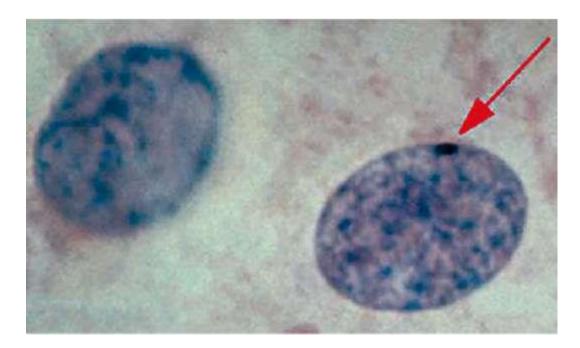
Доминантный ген в гетерозиготном состоянии проявляет себя сильнее, чем в гомозиготном.

• Расщепление по генотипу и по фенотипу при скрещивании гетерозигот по генотипу 1:2:1; по фенотипу 3:1 или 1:2

Форма эритроцитов при серповидно-клеточной анемии.

Кодоминирование

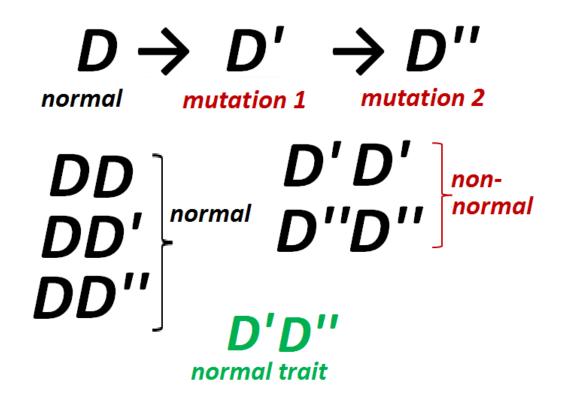
Гены одной аллельной пары равнозначны, ни один из них не подавляет действия другого; если они оба находятся в генотипе, оба проявляют свое действие.


• Примером является наследование IV группы крови по системе ABO.

Группа	Фенотип		Гены	Геноти
крови	антиген	антите		ПЫ
	Ы	ла		
I (0)	-	α, β	I^{O}	I_0I_0
II (A)	A	β	I^A	I^AI^A , I^AI^O
III (B)	В	α	I^B	I^BI^B , I^BI^O
IV(AB))	A, B	1	I^A , I^B	I^AI^B

Аллельное исключение

Форма взаимодействия при которой происходит исключение одного аллеля из генотипа (он становится нетранскрибируемым).


• Примером данного взаимодействия является аллельное исключение генов, локализованных в инактивированной половой X хромосоме женщины (тельце Барра) в соматических клетках.

Тельце Барра

Межаллельная комплементация

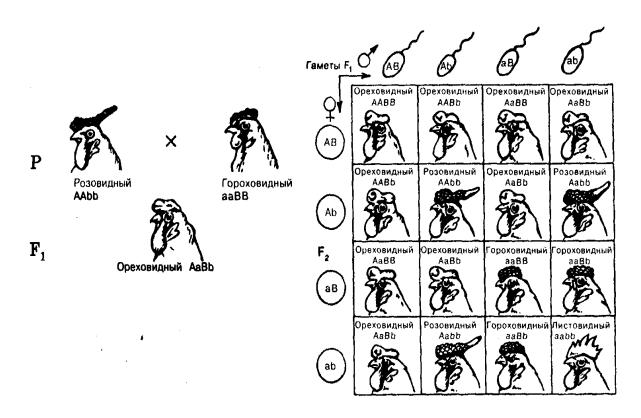
Два мутантных аллеля совместно могут обеспечить нормальный фенотип.

Взаимодействие между генами в генотипе.

Взаимодействие неаллельных генов.

Слайд 23-31

ФГБОУ ВО ОрГМУ Минздрава России Доцент кафедры биологии, к.б.н. Тихомирова Г.М.

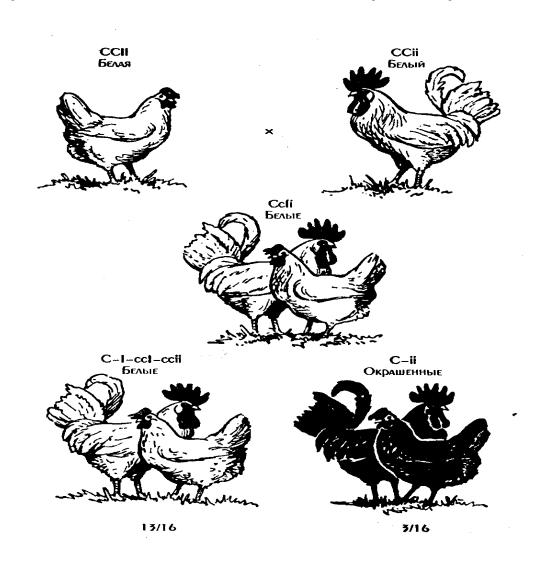

Формы взаимодействия неаллельные гены

- Комплементарность
- Эпистаз (доминантный и рецессивный)
- Полимерия (кумулятивная и некумулятивная)

Комплементарность

Это такая форма взаимодействия, при которой гены разных аллельных пар дополняют действие друг друга.

Расщепление при скрещивании двух гетерозигот
9:3:3:1, 9:6:1, 9:7


Эпистаз - взаимодействие неаллельных генов, при котором гены одной аллельной пары подавляют проявление второго неаллельного гена.

Доминантный эпистаз - доминантный ген одной аллельной пары подавляет действие генов другой аллельной пары.

 Расщепление при скрещивании дигетерозигот: 12:3:1 или 13:3 **Рецессивный эпистаз** - эпистатическое действие оказывает рецессивный ген в гомозиготном состоянии.

 Расщепление при скрещивании дигетерозигот:
9:3:4

Доминантный эпистаз. Наследование окраски у кур при взаимодействии двух пар генов

Рецессивный эпистаз. Бомбейский феномен

признак	ген	генотип
I(O)	lo	lolo
II(A)	lΑ	IAIA, IAIO
III(B)	lΒ	IBIB, IBIO
IV(AB)	Ι ^Α , Ι ^Β	IAIB
Не подавляет проявление группы крови	Н	HH, Hh
Подавляет проявление группы крови	h	hh

Рецессивный эпистаз. Бомбейский феномен

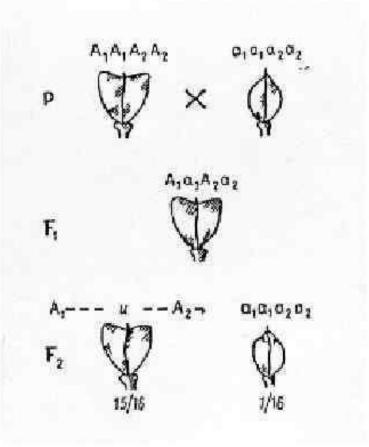
Родитель	Родитель ABHh (4 группа)			
АВНһ (4 группа)	AH	Ah	вн	Bh
АН	AAHH	AAHh	ABHH	ABHh
	(2 группа)	(2 группа)	(4 группа)	(4 группа)
Ah	AAHH	AAhh	ABHh	ABhh
	(2 группа)	(1 группа)	(4 группа)	(1 группа)
ВН	ABHH	ABHh	ВВНН	BBHh
	(4 группа)	(4 группа)	(3 группа)	(3 группа)
Bh	ABHh	ABhh	ABHh	BBhh
	(4 группа)	(1 группа)	(4 группа)	(1 группа)

Полимерия – взаимодействие неаллельных генов, при котором за один признак в организме отвечают несколько пар неаллельных геновгенов

Кумулятивная - число доминантных генов в генотипе влияет на степень выраженности признака.

 расщепление при скрещивании дигетерозигот 1:4:6:4:1 Некумулятивная полимерия - важно не количество доминантных аллелей в генотипе, а присутствие хотя бы одного из них

 расщепление при скрещивании дигетерозигот 15:1.

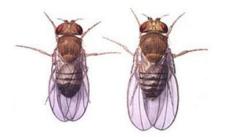

Пример кумулятивной полимерии

- Количество меланина в коже определяется тремя неаллельными генами A1A2A3
- Наибольшее количество меланина характерно для генотипа A1A1A2A2A3A3, что обуславливает темно-коричневый цвет кожи представителей негроидной расы.
- Для европеоидов характерен генотип a1a1a2a2a3a3
- Промежуточные варианты будут определять различную интенсивность пигментации. При этом чем больше доминантов в генотипе, тем темнее кожа.

Некумулятивная полимерия

При некумулятивной полимерии признак проявляется при наличии хотя бы одного из доминантных аллелей полимерных генов. Количество доминантных аллелей не влияет на степень выраженности признака.

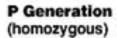
Сцепленное наследование генов. Основные положения хромосомной теории наследственности. Слайд 33-44


ФГБОУ ВО ОрГМУ Минздрава России Доцент кафедры биологии, к.б.н. Тихомирова Г.М.

Сцепленное наследование генов

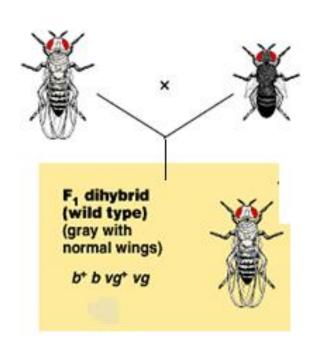
Томас Хант Морган

- Т. Моргана заложили основы хромосомной теории наследственности (1911г.)
- Объект исследования Drosophila melanogaster


Основные положения

хромосомной теории наследственности

- 1. Единицей наследственной информации является ген, локализованный в хромосоме.
- 2. Гены расположены в хромосомах в линейном порядке в определенных локусах. Аллельные гены занимают одинаковые локусы гомологичных хромосом.
- 3. Гены, расположенные в одной хромосоме, образуют группу сцепления и наследуются преимущественно вместе; число групп сцепления равно гаплоидному набору хромосом.
- 4. Между гомологичными хромосомами возможен обмен участками кроссинговер, который нарушает сцепление генов.
- 5. Процент кроссинговера пропорционален расстоянию между генами. 1 морганида единица расстояния, равная 1% кроссинговера.

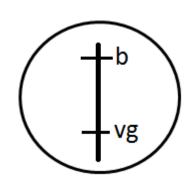

Признаки, изучаемые Т.Морганом

Признак	Ген	Генотип	
Серое тело	b+	b+b+; b+b	
Черное тело	b	bb	
Нормальные крылья	vg+	vg ⁺ vg ⁺ ; vg ⁺ vg	
Короткие крылья	vg	vg vg	

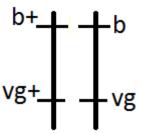
Wild type (gray with normal wings)

b+ b+ vg+ vg+

Double mutant (black with vestigial wings)


b b vg vg

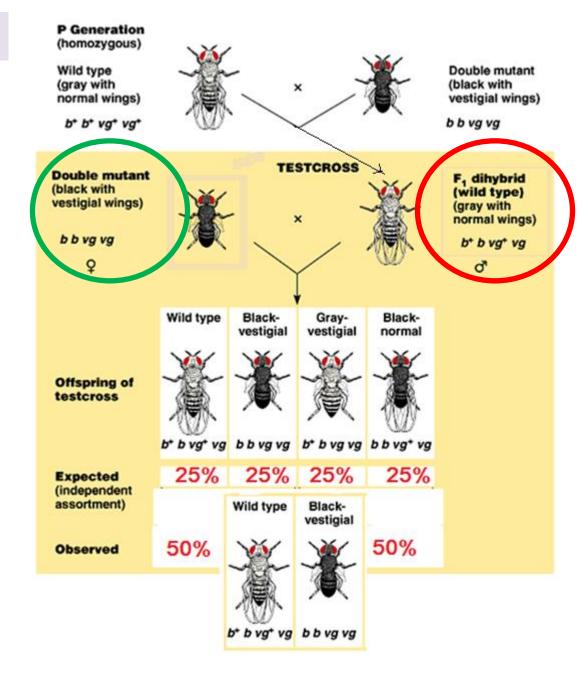
Первое скрещивание

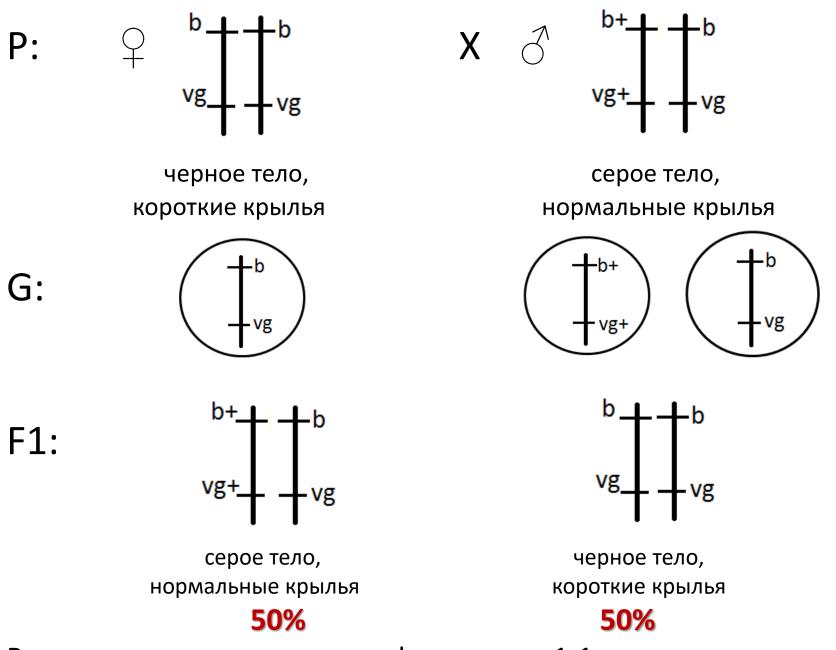

 \bigcirc b+b+ vg+vg+ X \bigcirc bb vg vg серое тело, нормальные крылья

черное тело, короткие крылья

G:

F1:

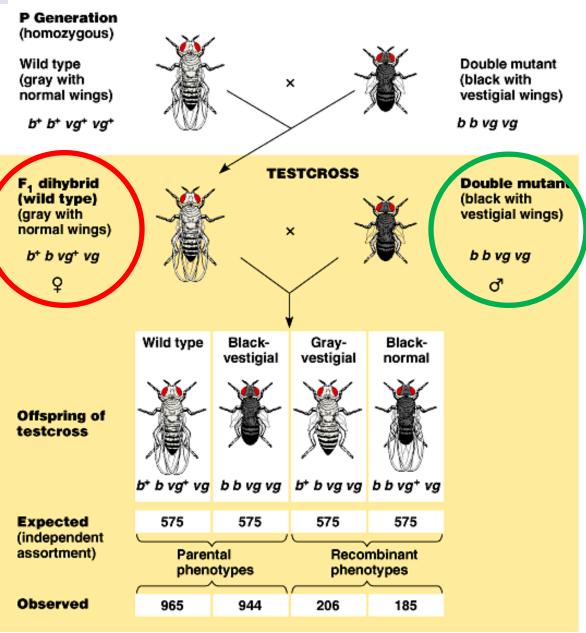

серое тело, нормальные крылья

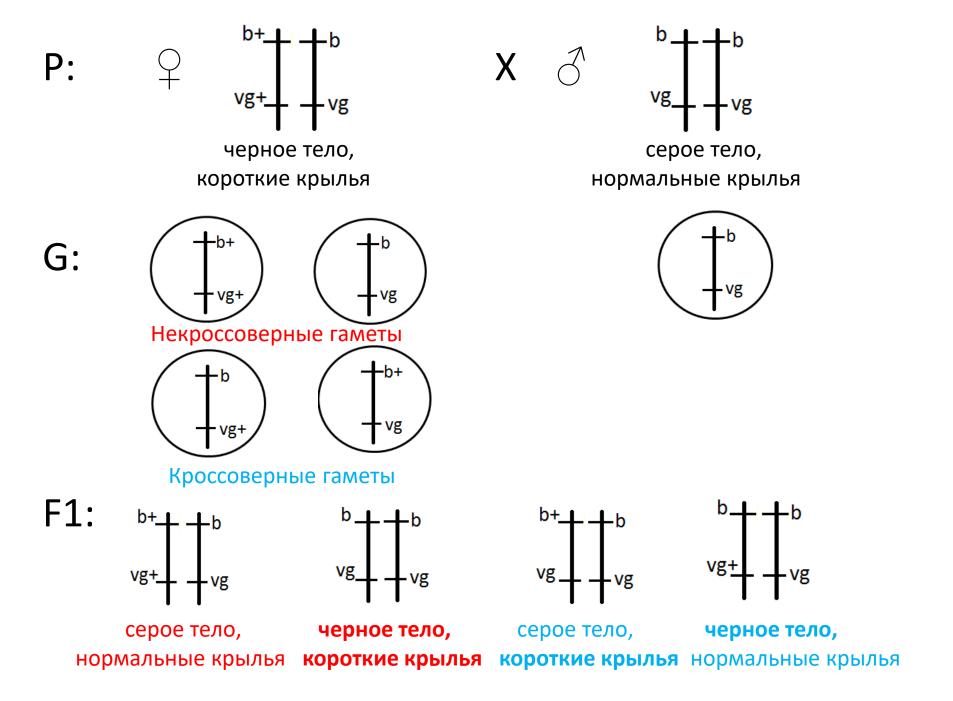

100%

Второе скрещивание

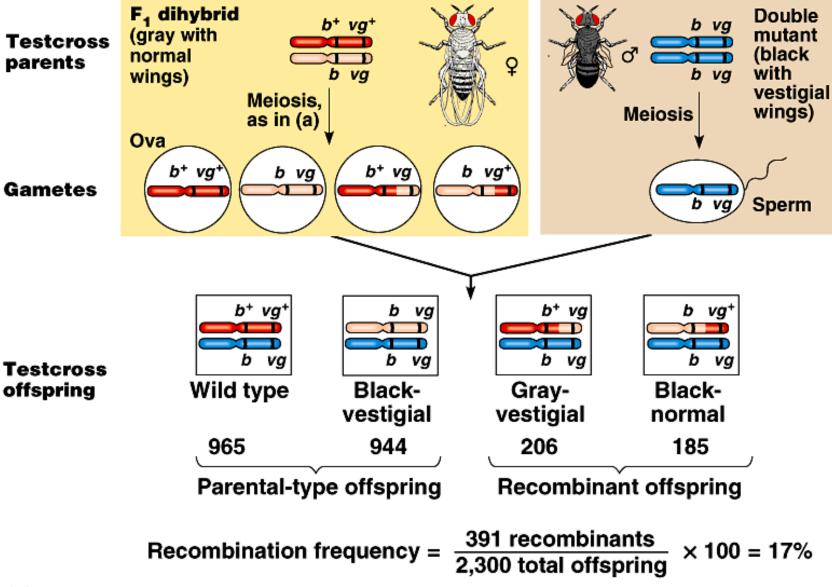
А) Он взял **рецессивную гомозиготную самку** и скрестил ее с **дигетерозиготным самцом** из F_1 .

!!! <u>у самцов</u> сцепление генов <u>полное</u>, следовательно, <u>кроссинговера нет.</u>

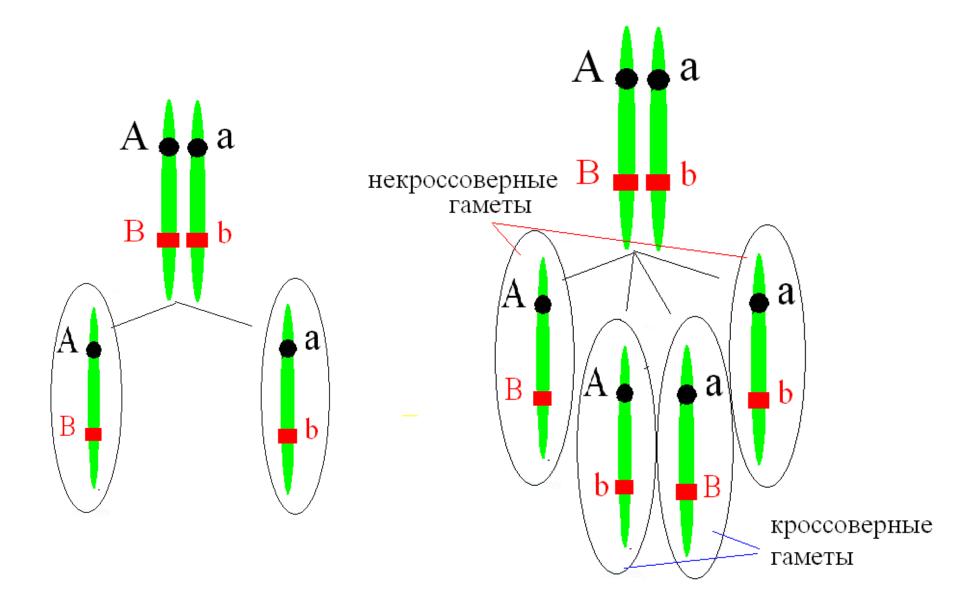



Расщепление по генотипу и фенотипу: 1:1

Третье скрещиваниє

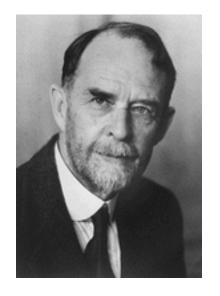

Б) Он взял рецессивного гомозиготную самца и скрестил его с дигетерозиготной самкой из F_1 .

!!! <u>у самок сцепление</u> генов <u>неполное</u>, следовательно, <u>происходит кроссинговер.</u>



Расщепление по генотипу и фенотипу: в соответствии с кроссинговером

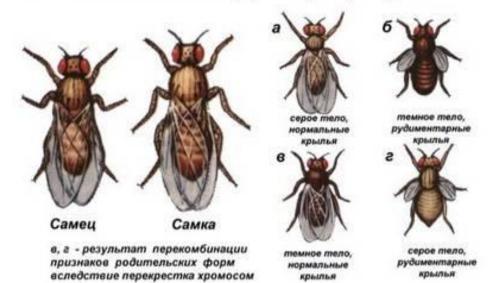
(b) Production of recombinant offspring



Морганида Кроссинговер

$$1\,\mathrm{M} \to 1\% \to 1\% \to 1\%$$
 кроссинго кроссоверных рекомбинантных вера гамет особей

Сцепленное наследование


- полное сцепление
- неполное сцепление

Т.Морган

Разные наследственные формы мухи дрозофилы

Множественные аллели. Слайд 46-47

ФГБОУ ВО ОрГМУ Минздрава России Доцент кафедры биологии, к.б.н. Тихомирова Г.М.

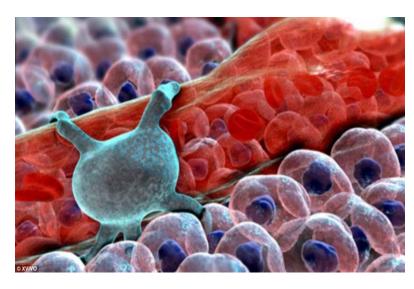
- Множественными называются аллели, которые представлены в популяции более чем двумя аллельными состояниями.
- Они возникают в результате многократного мутирования одного и того же локуса хромосомы.

Ген a^{ch} a^h

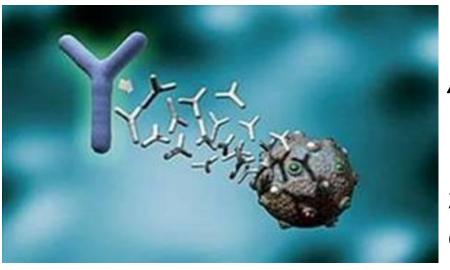
Множественные аллели.

Пример: окрас шерсти у кроликов $(A > a^{ch} > a^h > a)$.

Признак	ген	Генотип	Генотипы 2
Сплошная черная окраска	Α	AA, Aa	Aa ^{ch} , Aa ^h
Шиншилловая (сплошная серая)	a ^{ch}	a ^{ch} a ^{ch}	a ^{ch} a ^h , aa ^{ch}
Гималайская (белые, а кончики ушей, хвоста, ног окрашенные)	a ^h	a ^h a ^h	aa ^h
Белые	a	aa	

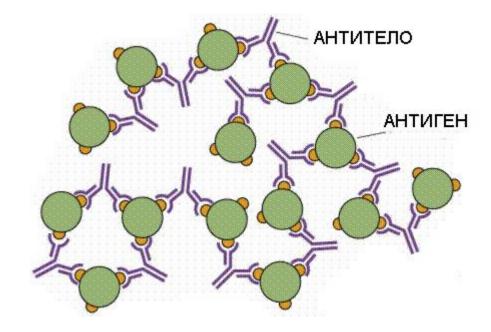

Иммуногенетика. Наследование группы крови по системе ABO. Слайд 49-56

ФГБОУ ВО ОрГМУ Минздрава России Доцент кафедры биологии, к.б.н. Тихомирова Г.М.



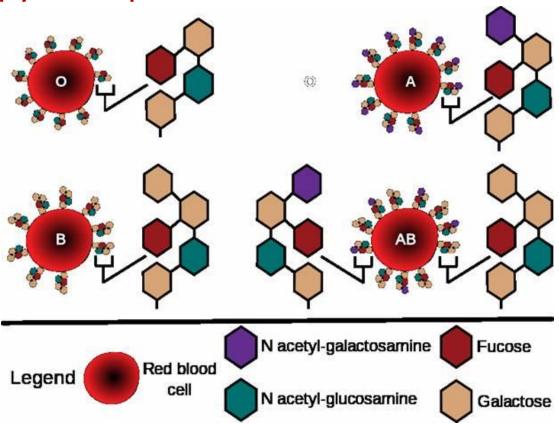
Иммуногенетика

комплексная научная дисциплина, сочетающая методы иммунологии, молекулярной биологии и генетики для изучения наследственных факторов иммунитета, внутривидового разнообразия и наследования тканевых антигенов.

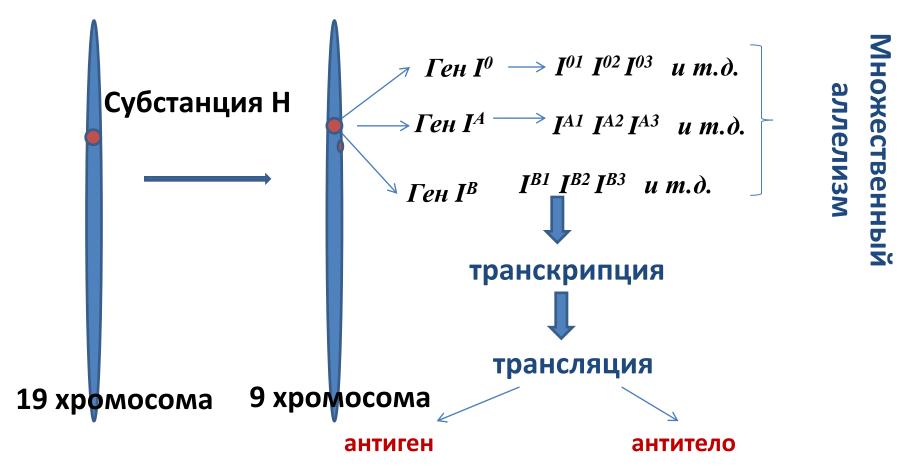


Понятия иммуногенетики

- чужеродные высокомолекулярные вещества, которые при введении в организм животных и человека вызывают образование специфически реагирующих с ними веществ называемых антитела.


Антитела — это белки относящиеся к классу углобулинов содержащиеся в крови и других биологических жидкостях позвоночных животных. Синтезируются В-лимфоцитами.

Наследование группы крови по системе АВО


В 1900 - 1901 гг. австрийский ученый К. Ландштейнер открыл группы крови.

Он описал четыре группы крови, за что в 1930 г. ему была присуждена Нобелевская премия.

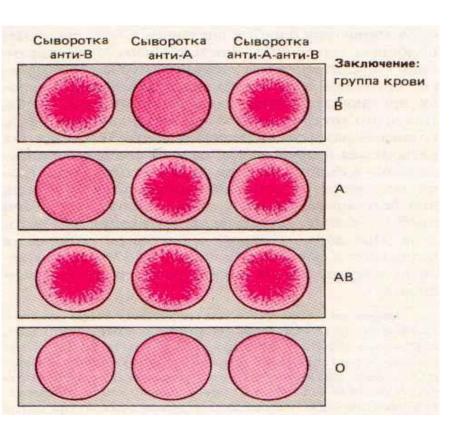
Эритроцит покрыт плазмалеммой толщиной около 7 нм, в которую встроены антигены системы АВО. В плазме крови каждого человека имеются антитела против антигенов эритроцитов, которые не содержатся в его собственной крови.

Наследование группы крови по системе АВО

Изначально общим предшественником всех антигенов является *субственция* **H** (19 хромосоме). В локусе 9 хромосомы имеется ген, который определяет развитие *антигенов* **A** *u* **B**. К субстанциям **H** и **O** антител нет.

	Group A	Group B	Group AB	Group O
Red blood cell type	A	В	AB	
Antibodies present	Anti-B	Anti-A	None	Anti-A and Anti-B
Antigens present	P A antigen	† B antigen	P† A and B antigens	No antigens

ı

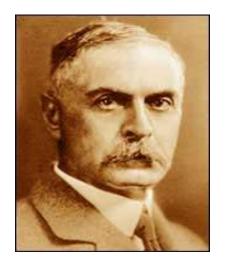

Наследование групп крови по системе АВО

Группа крови	Фенотип		Гены	Генотипы	
1	антигены	антитела			
I (0)	-	α, β	<i>I</i> ⁰	I ₀ I ₀	
II (A)	A	β	I ^A	IAIA, IAI 0 полное доминирование	
III (B)	В	α	I^B	I^BI^B , I^BI^0	
IV(AB)	A B	-	I^A , I^B	І А І В кодоминирование	

Геногеография

Группа крови	Распространенность
I (0)	Новый свет (Южная и северная Америки)
II (A)	Европа и Австралия
III (B)	Азия
IV(AB)	5% всего населения

Значение групп крови по системе АВО



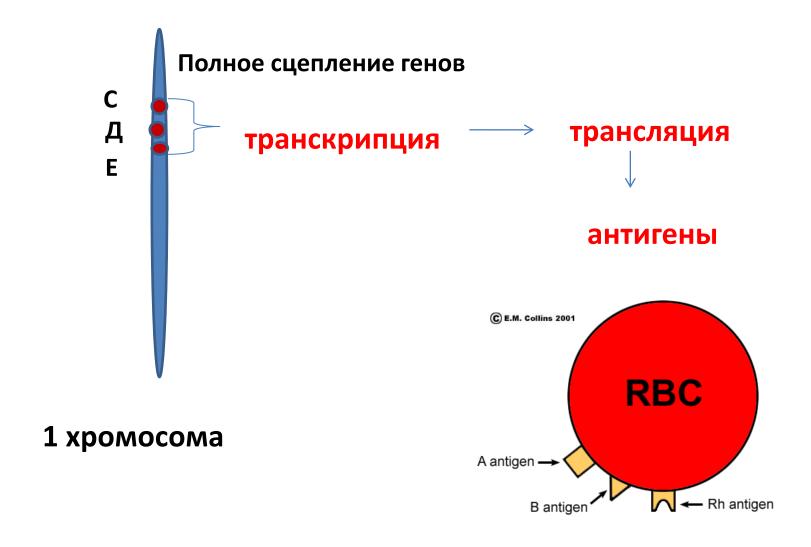
!!!!Врожденные антитела характерны только для антигенной системы ABO.

- При переливании группы крови (из группы в группу).
- Установление зиготности близнецов.
- Для картирования хромосом и установления групп сцепления
- Установлены ассоциации антигенов системы ABO с различными инфекционными и неинфекционными заболеваниями (маркеры заболеваний).
- Конфликт по системе AB0.
- В судебно-медицинской экспертизе (установление отцовства и т.д.)

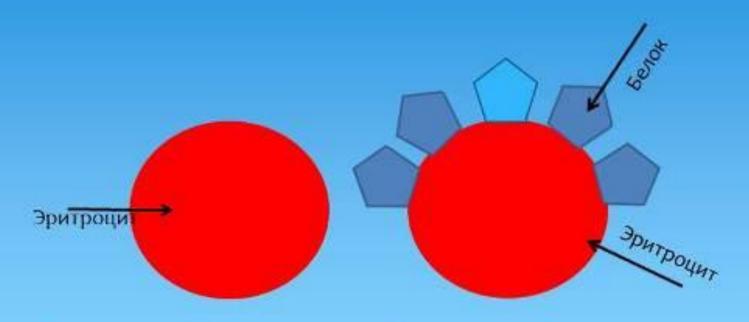
Иммуногенетика. Наследование резус фактора. Слайд 58-67

ФГБОУ ВО ОрГМУ Минздрава России Доцент кафедры биологии, к.б.н. Тихомирова Г.М.

Karl Landsteiner 1868-1943


Alexander S. Wiener

Наследование Rh-фактора



- Ученые открывшие систему
- К. Ландштайнер и А. Винер.
- Система Rh-фактора названа в честь макак-резус, на эритроцитах которых впервые были обнаружены антигены.

Наследование Rh-фактора

Отрицательный резус-фактор

Положительный резус-фактор

Понятие Rh – фактор, и его наследование

Rh -фактор	Гены	Генотипы	Фенотип	
			антигены	антитела
Rh - фактор положительный	C, D, E	C_D_E_	СДЕ	-
Rh - фактор положительный	C, D, e	C_D_ee	СД	-
Rh - фактор положительный	c, D, E	ccD_E_	ДЕ	-
Rh - фактор положительный	c, D, e	ccD_ee	Д	-
Rh - фактор «прима»	C, d, e	C_ddee	C	-
Rh – фактор «прима»	c,d,E	ccddE_	E	-
Rh – фактор «секунда»	C,d,E	C_ddE_	C,E	-
Rh - фактор отрицательный	c,d,e	ccddee	-	-

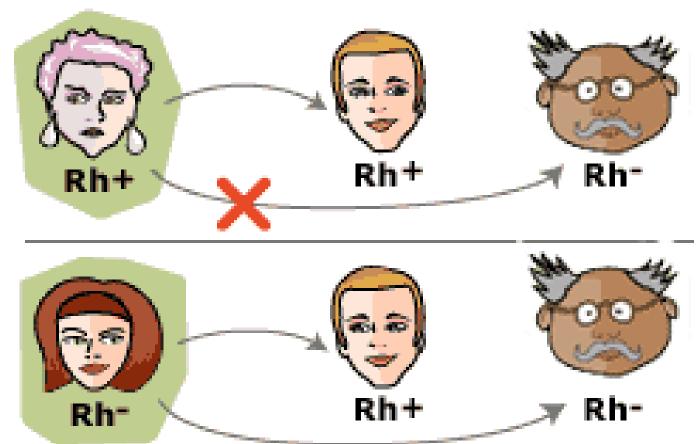
Распределение резус — фактора в человеческой популяции

• Европейская раса

```
84% - резус-положительных людей;
```

16% - резус-отрицательных людей;

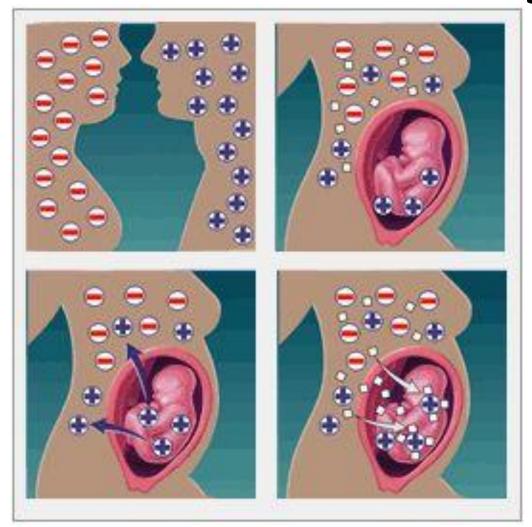
• Негроидная раса


```
16% - резус-положительных людей;
```

84% - резус-отрицательных людей;

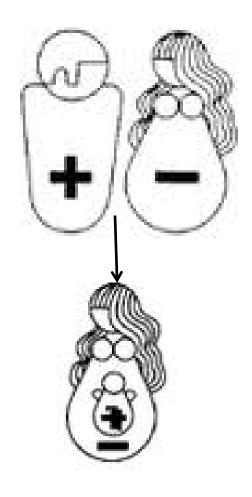
• Монголоидная раса:

```
около 99% - резус-положительных людей; около 1% - резус-отрицательных людей;
```


Значение Rh-фактора

1. Переливание крови

Резус-положительную кровь нельзя переливают резусотрицательному человеку, т.к. вырабатываются антитела, называемые анти-Rh агглютинины, происходит агглютинация. В конечном итоге происходит разрушение клеток (гемолиз).


Значение Rh-фактора

2. Резус-конфликт между матерью и плодом.

Резус-конфликт.

Гемолитическая болезнь плода и новорожденного

Гемолитическая болезнь новорожденного

В результате несовместимости возникает эритробластоз плода.

Симптомы и признаки гемолитической болезни у новорожденных:

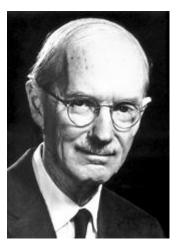
- Анемия, что создает бледность новорожденного).
- Желтуха или пожелтение кожи новорожденного или склеры. Это вызвано наличием билирубина (один из конечных продуктов разрушения эритроцитов).
- Расширение печени новорожденного и селезенки.
- Одышка или затрудненное дыхание.

Значение Rh-фактора

3. Судебной экспертизе.

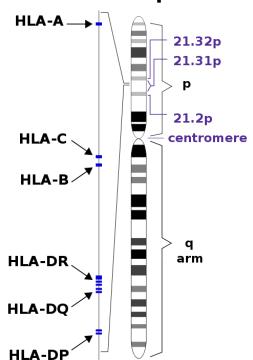
Иммуногенетика. Наследование системы HLA. Слайд 69-74

ФГБОУ ВО ОрГМУ Минздрава России Доцент кафедры биологии, к.б.н. Тихомирова Г.М.


Система HLA (человеческий лейкоцитарный антиген)

Jean Dausset 1916-2009

Baruj Benacerraf 1920-2011

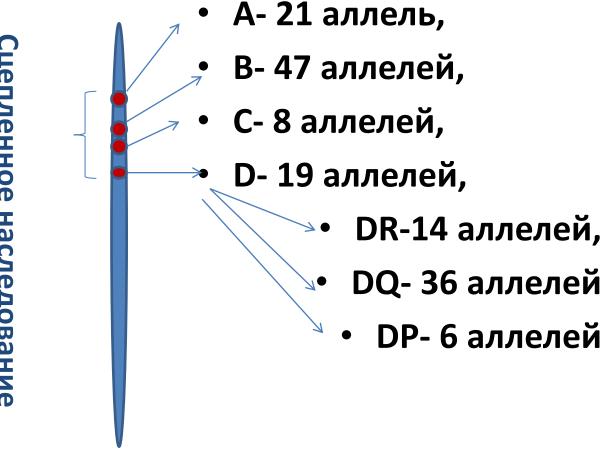

George Davis Snell 1903-1996

Ученые открывшие систему

 На поверхности лейкоцитов были обнаружены специальные антигены.

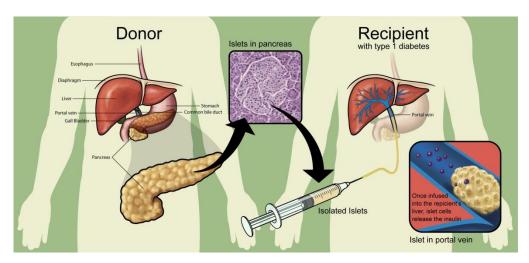
Система гистосовместимости человека HLA – человеческие лейкоцитарные антигены

HLA MHC Complex

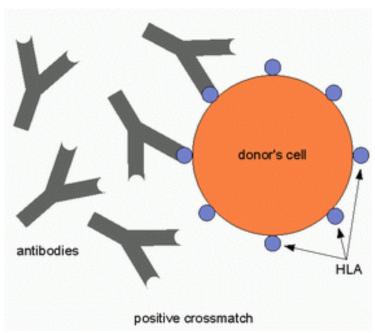


human chromosome 6

- Гены в 6 хромосоме: 4 локуса (А, В, С,D) и 4 сублокуса D.
- Антигены в мембране всех ядросодержащих клеток
- более 100 белков
- Антитела в сыворотке крови


Сцепленное наследование

Система гистосовместимости (система HLA)



6 хромосома

Значение HLA системы

1. Трансплантация органов и тканей: определяет совместимость доноров для пересадки органов.

Значение HLA системы

2. Маркеры HLA

- Антигены, отвечающие за достоверное снижение степени риска, за относительную устойчивость к болезни назвали антигенами «протекторами»,
- антигены, увеличивающие риск заболевания антигены — провокаторы.

Спасибо за внимание!

